gTTS Documentation

Pierre-Nick Durette

Jan 01, 2020

1 Installation

1.1

1.2

1.3

1.4
1.5

1.6

DOCUMENTATION

3
Command-line (Gtts—cli) o . i i i e e e e e e e e e e e e e e e e e 3
LI gtts-cli . o oo o e 3
1.1.2 0 Exampleso e e 4
1.1.3 Playing sound directly e e e e e e 5
Module (GEES) . . . v o e e e e e e e e e e e e e e e 5
12,1 @TTS (GEEs.gTTS) v v v v e 5
1.2.2 Languages (Gtts.1ang) o v v i v v it e e e e e e e e e e e e e e e 7
1.23 Examples o e e e e e e e 7
1.2.4 Playingsound directly L. e e e e e e e 8
125 LOZEING . . o v o e e e e e e e e e e e e e e e e e e 8
Pre-processing and tokenizing oL e e 8
1.3.1 Definitions o o o o e e e e e e e e e e e e e e 9
1.3.2 Pre-processing e 9
1.3.3 Tokenizing e e 10
.34 MInimizing o vt e 11
1.3.5 gtts.tokenizer module reference (gtts.tokenizer) 12
License L L e 16
Contributing e e 16
1.5.1 Reporting Issues e e e e 16
1.5.2 Submitting Patches e e e e 16
1.53 Testing o o o e e e e e e e e e e e e e e e e 17
Changelog o o e e e e 17
1.6.1 2.1.0(2020-01-01) o o e e e 17
1.6.2 2.0.4 (2019-08-29) L e 18
1.6.3 2.0.3(2018-12-15) . . . o o o e 18
1.6.4 202 (2018-12-00) o o e e e 18
1.6.5 2.0.1 (2018-00-20) o o o e e e e 19
1.6.6 2.0.0 (2018-04-30) e e e e e e e 19
1.6.7 1.2.2 (2017-08-15) o o o e 21
1.6.8 1.2.1 (2017-08-02) o e e 22
1.6.9 1.2.0 (2017-04-15) . . . o o e e e e 22
1.6.10 1.1.8 (2017-01-15) o o o e e e 22
1.6.11 L.1.7(2016-12-14) e e 22
1.6.12 1.1.6 (2016-07-20) o o o e e e 23
1.6.13 1.1.5(2016-05-13) o o o e 23
1.6.14 1.1.4 (2016-02-22) o o o e e e e e 23
1.6.15 1.1.3(2016-01-24) e e e 23
1.6.16 1.1.2 (2016-01-13) e 23
1.6.17 1.0.7 (2015-10-07) o o o e e e e e 24

2 Misc

1.6.18
1.6.19
1.6.20
1.6.21
1.6.22
1.6.23
1.6.24

1.0.6 (2015-07-30) + + o v e e e e
105 (Q015-07-15) + « v v e e e e e e e
104 (2015-05-11) « v v v e e e e e e
103 (Q014-1121) o v oo e e e e e e e e e e e
102 (2014-05-15) + v o v v e e e e e e
101 (2014-05-15) + o v e e e e e e
1.0 (2014-05-08) .+« o v v e e e

Python Module Index

Index

gTTS Documentation

gTTS (Google Text-to-Speech), a Python library and CLI tool to interface with Google Translate’s text-to-speech API.
Writes spoken mp 3 data to a file, a file-like object (bytestring) for further audio manipulation, or stdout. It features
flexible pre-processing and tokenizing, as well as automatic retrieval of supported languages.

DOCUMENTATION 1

gTTS Documentation

2 DOCUMENTATION

CHAPTER
ONE

INSTALLATION

’pip install gTTS

1.1 Command-line (gtts-cli)

After installing the package, the gtts—c11i tool becomes available:

’$ gtts-cli

1.1.1 gtts-cli

Read <text> to mp3 format using Google Translate’s Text-to-Speech API (set <text> or —file <file> to - for standard
input)

gtts-cli [OPTIONS] <text>

Options

-f£,

-0,

-s,

-1,

-t,

——file <file>
Read from <file> instead of <text>.

——output <output>
Write to <file> instead of stdout.

——slow
Read more slowly.

--lang <lang>
IETF language tag. Language to speak in. List documented tags with —all. [default: en]

——tld <tld>
Top-level domain for the Google host, i.e https://translate.google.<tld> [default: com]

—-nocheck

Disable strict IETF language tag checking. Allow undocumented tags.

—--all

Print all documented available IETF language tags and exit. Use —tld beforehand to use an alternate domain

——debug

Show debug information.

https://translate.google

gTTS Documentation

——version
Show the version and exit.

Arguments

<text>
Optional argument

1.1.2 Examples

List available languages:

’$ gtts—-cli --all

List available languages (Italian names):

’$ gtts-cli --tld it --all

Read ‘hello’ to hello.mp3:

’$ gtts-cli 'hello' —--output hello.mp3

Read “c’est la vie” in French to cestlavie.mp3:

’$ gtts-cli "c'est la vie" --lang fr —--output cestlavie.mp3

Read ¢ to .mp3 (in Mandarin, using google.cn):

’$ gtts-cli '"' --tld cn --lang zh-cn —--output .mp3

Read ‘slow’ slowly to slow.mp3:

’$ gtts-cli 'slow' --slow —--output slow.mp3

Read ‘hello’ to stdout:

’$ gtts-cli 'hello'

Read stdintohello.mp3 via<text>or<file>:

$ echo -n 'hello' | gtts-cli - —--output hello.mp3
$ echo -n 'hello' | gtts-cli --file - --output hello.mp3

Read ‘no check’ to nocheck . mp3 without language checking:

$ gtts-cli 'no check' --lang zh --nocheck --ouput nocheck.mp3

Note: Using ——nocheck can speed up execution. It exists mostly however to force a <lang> language tag that
might not be documented but would work with the API, such as for specific regional sub-tags of documented tags
(examples for ‘en’: ‘en-gb’, ‘en-au’, etc.).

4 Chapter 1. Installation

gTTS Documentation

1.1.3 Playing sound directly

You can pipe the output of gtts—cli into any media player that supports stdin. For example, using the play
command from SoX:

’$ gtts—-cli 'hello' | play -t mp3 -

1.2 Module (gtts)

e ¢TTS (gtts.gTTS)
* Languages (gtts.lang)
* Examples

* Playing sound directly

* Logging

1.2.1 gTTS (gtts.gTTSs)

class gtts.tts.gTTS (fext, tld="com', lang="en’, slow=Fualse, lang_check=True,
pre_processor_funcs=[<function tone_marks>, <function end_of line>,
<function abbreviations>, <function word_sub>], tokenizer_func=<bound
method Tokenizer.run of re.compile('(?<=\?).1(?<=!).1(?<=).1(?<=).1(?</\.[a-
N l(2<N[a-z]), 1(2<Nd): 11Tl IN L. NHT—N]', re IGNORECASE)
from: [<function tone_marks>, <function period_comma>, <function colon>,

<function other_punctuation>[>)
gTTS — Google Text-to-Speech.

An interface to Google Translate’s Text-to-Speech APL.
Parameters
* text (string) - The text to be read.

e tld (string) - Top-level domain for the Google Translate host, i.e
https://translate.google.<tld>. This is useful when google.com might be blocked
within a network but a local or different Google host (e.g. google. cn) is not. Default is
com.

* lang (string, optional) — The language (IETF language tag) to read the text in.
Default is en.

* slow (bool, optional)-Reads text more slowly. Defaults to False.

* lang_check (bool, optional) — Strictly enforce an existing lang, to catch a lan-
guage error early. If set to True, a ValueError is raised if 1ang doesn’t exist. Setting
lang_check to False skips Web requests (to validate language) and therefore speeds up
instanciation. Default is True.

* pre_processor_funcs (1ist) — A list of zero or more functions that are called to
transform (pre-process) text before tokenizing. Those functions must take a string and return
a string. Defaults to:

1.2. Module (gtts) 5

http://sox.sourceforge.net

gTTS Documentation

pre_processors.tone_marks,
pre_processors.end_of_line,
pre_processors.abbreviations,
pre_processors.word_sub

* tokenizer_func (callable)— A function that takes in a string and returns a list of
string (tokens). Defaults to:

Tokenizer ([
tokenizer_cases.tone_marks,
tokenizer_cases.period_comma,
tokenizer_cases.colon,
tokenizer_cases.other_punctuation

1) .run

See also:

Pre-processing and tokenizing

Raises

* AssertionError — When text is None or empty; when there’s nothing left to speak
after pre-precessing, tokenizing and cleaning.

* ValueError — When lang_check is True and lang is not supported.
* RuntimeError — When lang_check is True but there’s an error loading the languages
dictionnary.
get_urls()
Get TTS API request URL(s) that would be sent to the TTS APL
Returns
A list of TTS API request URLs to make.

This is particularly useful to get the list of URLs generated by gTTS but not yet full-
filled, for example to be used by an external program.

Return type list

save (savefile)
Do the TTS API request and write result to file.

Parameters savefile (string)— The path and file name to save the mp3 to.
Raises gTTSError — When there’s an error with the API request.

write_to_f£p (fp)
Do the TTS API request(s) and write bytes to a file-like object.

Parameters fp (file object)— Any file-like object to write the mp3 to.
Raises

* gTTSError — When there’s an error with the API request.

* TypeError — When fp is not a file-like object that takes bytes.

exception gtts.tts.gTTSError (msg=None, **kwargs)
Exception that uses context to present a meaningful error message

6 Chapter 1. Installation

gTTS Documentation

infer_ msg (its, rsp=None)
Attempt to guess what went wrong by using known information (e.g. http response) and observed be-
haviour

1.2.2 Languages (gtts.lang)

Note: The easiest way to get a list of available language is to print them with gtts-cli --all

gtts.lang.tts_langs (tld='com’)
Languages Google Text-to-Speech supports.

Parameters t1d (string) — Top-level domain for the Google Translate host to fetch languages
from. i.e https://translate.google.<tld>. Default is com.

Returns
A dictionnary of the type { ‘<lang>’: ‘<name>’}

Where <lang> is an IETF language tag such as en or pt-br, and <name> is the full
English name of the language, such as English or Portuguese (Brazil).

Return type dict
The dictionnary returned combines languages from two origins:
» Languages fetched automatically from Google Translate

* Languages that are undocumented variations that were observed to work and present different dialects or
accents.

1.2.3 Examples

Write ‘hello’ in English to hello.mp3:

>>> from gtts import gTTS
>>> tts = gTTS('hello', lang='en')
>>> tts.save('hello.mp3")

Write ‘hello bonjour’ in English then French to hello_bonjour.mp3:

>>> from gtts import gTTS

>>> tts_en = gTTS('hello', lang='en')

>>> tts_fr = gTTS('bonjour', lang='fr')

>>>

>>> with open('hello_bonjour.mp3', 'wb') as f:
tts_en.write_to_fp (f)
tts_fr.write_to_fp (p)

Instead of writing to disk, get URL for ‘hello’ in English:

>>> from gtts import gTTS

>>> tts = gTTS('hello', lang='en')

>>> tts.get_urls ()
["https://translate.google.com/translate_tts?ie=UTF-8&g=hello&tl=en&ttsspeed=1&
—total=1&idx=0&client=tw-ob&textlen=5tk=316070.156329"']

1.2. Module (gtts) 7

gTTS Documentation

1.2.4 Playing sound directly

There’s quite a few libraries that do this. Write ‘hello’ to a file-like object to do further manipulation::

>>> from gtts import gTTS

>>> from io import BytesIO

>>>

>>> mp3_fp = BytesIO()

>>> tts = gTTS('hello', 'en')

>>> tts.write_to_fp (mp3_£fp)

>>>

>>> # Load ‘mp3_fp' as an mp3 file in
>>> # the audio library of your choice

Note: See [ssue #26 for a discussion and examples of direct playback using various methods.

Note: Starting with gTTS 2.1.0,the gtts.tts.gTTS.get_urls method can be used to obtain the list of gener-
ated URLs requests (whithout fullfilling them) which could be used for playback in another program. See Examples
above.

1.2.5 Logging

gtts does logging using the standard Python logging module. The following loggers are available:
gtts.tts Logger used for the gTTS class

gtts.lang Logger used for the 1ang module (language fetching)

gtts Upstream logger for all of the above

1.3 Pre-processing and tokenizing

The gtts.tokenizer module powers the default pre-processing and tokenizing features of gTTS and provides
tools to easily expand them. gtts.tts.gTTS takes two arguments pre_processor_funcs (list of functions)
and tokenizer_func (function). See: Pre-processing, Tokenizing.

* Definitions
* Pre-processing
— Customizing & Examples
» Tokenizing
— Customizing & Examples
— Using a 3rd-party tokenizer

* Minimizing

o gtts.tokenizer module reference (gtts.tokenizer)

8 Chapter 1. Installation

https://github.com/pndurette/gTTS/issues/26

gTTS Documentation

1.3.1 Definitions

Pre-processor: Function that takes text and returns text. Its goal is to modify text (for example correcting pronounci-
ation), and/or to prepare text for proper tokenization (for example enuring spacing after certain characters).

Tokenizer: Function that takes text and returns it split into a list of tokens (strings). In the gTTS context, its goal is
to cut the text into smaller segments that do not exceed the maximum character size allowed for each TTS API
request, while making the speech sound natural and continuous. It does so by splitting text where speech would

naturaly pause (for example on “.”) while handling where it should not (for example on “10.5” or “U.S.A.”).
Such rules are called tokenizer cases, which it takes a list of.

Tokenizer case: Function that defines one of the specific cases used by gtts. tokenizer.core.Tokenizer.
More specefically, it returns a regex object that describes what to look for for a particular case. gtts.
tokenizer.core.Tokenizer then creates its main regex pattern by joining all tokenizer cases with “I”.

1.3.2 Pre-processing

You can pass a list of any function to gtts.tts.gTTS’s pre_processor_funcs attribute to act as pre-
processor (as long as it takes a string and returns a string).

By default, gt ts. tts.gTTs takes a list of the following pre-processors, applied in order:

[
pre_processors.tone_marks,
pre_processors.end_of_line,
pre_processors.abbreviations,
pre_processors.word_sub

gtts.tokenizer.pre_processors.abbreviations (fext)
Remove periods after an abbreviation from a list of known abbrevations that can be spoken the same without
that period. This prevents having to handle tokenization of that period.

Note: Could potentially remove the ending period of a sentence.

Note: Abbreviations that Google Translate can’t pronounce without (or even with) a period should be added as
a word substitution with a PreProcessorSub pre-processor. Ex.: ‘Esq.’, ‘Esquire’.

gtts.tokenizer.pre_processors.end_of_line (text)
Re-form words cut by end-of-line hyphens.

Remove “<hyphen><newline>".

gtts.tokenizer.pre_processors.tone_marks (fext)
Add a space after tone-modifying punctuation.

Because the fone_marks tokenizer case will split after a tone-modidfying punctuation mark, make sure there’s
whitespace after.

gtts.tokenizer.pre_processors.word_sub (fext)
Word-for-word substitutions.

1.3. Pre-processing and tokenizing 9

gTTS Documentation

Customizing & Examples

This module provides two classes to help build pre-processors:
* gtts.tokenizer.core.PreProcessorRegex (for regex-based replacing, as would re . sub use)
* gtts.tokenizer.core.PreProcessorSub (for word-for-word replacements).

The run (text) method of those objects returns the processed text.

Speech corrections (word substitution)

The default substitutions are defined by the gt ts. tokenizer.symbols.SUB_PAIRS list. Add a custom one by
appending to it:

>>> from gtts.tokenizer import pre_processors
>>> import gtts.tokenizer.symbols
>>>
>>> gtts.tokenizer.symbols.SUB_PAIRS.append (
('"sub.', 'submarine')

)
>>> test_text = "Have you seen the Queen's new sub.?"
>>> pre_processors.word_sub (test_text)
"Have you seen the Queen's new submarine?"

Abbreviations

The default abbreviations are defined by the gt ts. tokenizer.symbols.ABBREVIATIONS list. Add a custom
one to it to add a new abbreviation to remove the period from. Note: the default list already includes an extensive list
of English abbreviations that Google Translate will read even without the period.

See gtts.tokenizer.pre_ processors for more examples.

1.3.3 Tokenizing
You can pass any functionto gt ts. tts.gTTS’s tokenizer_func attribute to act as tokenizer (as long as it takes
a string and returns a list of strings).

By default, gTTS takes the gtts.tokenizer.core.Tokenizer’s gtts.tokenizer.core.
Tokenizer.run (), initialized with default tokenizer cases:

Tokenizer ([
tokenizer_cases.tone_marks,
tokenizer_cases.period_comma,
tokenizer_cases.other_punctuation

]) .run

The available tokenizer cases are as follows:

gtts.tokenizer.tokenizer_cases.colon ()
Colon case.

[Tt

Match a colon “:” only if not preceeded by a digit. Mainly to prevent a cut in the middle of time notations e.g.
10:01

10 Chapter 1. Installation

gTTS Documentation

gtts.tokenizer.tokenizer_cases.legacy_all_punctuation ()
Match all punctuation.

Use as only tokenizer case to mimic gTTS 1.x tokenization.

gtts.tokenizer.tokenizer_cases.other_punctuation ()
Match other punctuation.

Match other punctuation to split on; punctuation that naturally inserts a break in speech.

gtts.tokenizer.tokenizer_cases.period comma ()
Period and comma case.

Match if not preceded by “.<letter>" and only if followed by space. Won’t cut in the middle/after dotted abbre-
viations; won’t cut numbers.

Note: Won’t match if a dotted abbreviation ends a sentence.

Note: Won’t match the end of a sentence if not followed by a space.

gtts.tokenizer.tokenizer_cases.tone_marks ()
Keep tone-modifying punctuation by matching following character.

Assumes the tone_marks pre-processor was run for cases where there might not be any space after a tone-
modifying punctuation mark.

Customizing & Examples

A tokenizer case is a function that returns a compiled regex object to be used ina re.split () context.

“ln

gtts.tokenizer.core.Tokenizer takes a list of tokenizer cases and joins their pattern with
pattern.

in one single

This module provides a class to help build tokenizer cases: gtts.tokenizer.core.RegexBuilder. See
gtts.tokenizer.core.RegexBuilder and gtts.tokenizer.tokenizer cases for examples.

Using a 3rd-party tokenizer

Even though gtts.tokenizer.core.Tokenizer works well in this context, there are way more advanced
tokenizers and tokenzing techniques. As long as you can restrict the lenght of output tokens, you can use any tokenizer
you’d like, such as the ones in NLTK.

1.3.4 Minimizing

The Google Translate text-to-speech API accepts a maximum of 100 characters.
If after tokenization any of the tokens is larger than 100 characters, it will be split in two:
* On the last space character that is closest to, but before the 100th character;

* Between the 100th and 101st characters if there’s no space.

1.3. Pre-processing and tokenizing 11

http://www.nltk.org

gTTS Documentation

1.3.5 gtts.tokenizer module reference (gtts.tokenizer)
class gtts.tokenizer.core.RegexBuilder (pattern_args, pattern_func, flags=0)
Builds regex using arguments passed into a pattern template.

Builds a regex object for which the pattern is made from an argument passed into a template. If more than one
argument is passed (iterable), each pattern is joined by “I” (regex alternation ‘or’) to create a single pattern.

Parameters
* pattern_args (iteratable) - String element(s) to be each passed to
pattern_func to create a regex pattern. FEach element is re.escape’d before
being passed.

* pattern_func (callable)- A ‘template’ function that should take a string and return
a string. It should take an element of pattern_args and return a valid regex pattern
group string.

» flags — re flag(s) to compile with the regex.

Example

To create a simple regex that matches on the characters “a”, “b”, or “c”, followed by a period:

>>> rb = RegexBuilder ('abc', lambda x: "/{/\.".format (x))

Looking at rb . regex we get the following compiled regex:

>>> print (rb.regex)

"a\. |b\.[c\."'

The above is fairly simple, but this class can help in writing more complex repetitive regex, making them more
readable and easier to create by using existing data structures.

Example

ELINT3 EEINT3

To match the character following the words “lorem”, “ipsum”, “meili” or “koda”:

>>> words = ['lorem', 'ipsum', 'meili', 'koda']
>>> rb = RegexBuilder (words, lambda x: " (?<={}).".format (x))

Looking at rb . regex we get the following compiled regex:

>>> print (rb.regex)
'(?<=lorem) .| (?<=ipsum) .| (?<=meili) .| (?<=koda) .'

class gtts.tokenizer.core.PreProcessorRegex (search_args, search_func, repl, flags=0)
Regex-based substitution text pre-processor.

Runs a series of regex substitutions (re.sub) from each regex of a gtts.tokenizer.core.
RegexBuilder with an extra repl replacement parameter.

Parameters

* search_args (iteratable)— String element(s) to be each passed to search_func
to create a regex pattern. Each element is re . escape’d before being passed.

12 Chapter 1. Installation

gTTS Documentation

* search_func (callable)- A ‘template’ function that should take a string and return a
string. It should take an element of search_args and return a valid regex search pattern
string.

* repl (string)— The common replacement passed to the sub method for each regex.
Can be a raw string (the case of a regex backreference, for example)

» flags — re flag(s) to compile with each regex.

Example

Add “!” after the words “lorem” or “ipsum”, while ignoring case:

>>> import re

>>> words = ['lorem', 'ipsum']
>>> pp = PreProcessorRegex (words,
lambda x: " ()" .format (x), r'\1!",

re.IGNORECASE)

In this case, the regex is a group and the replacement uses its backreference \ 1 (as a raw string). Looking at pp
we get the following list of search/replacement pairs:

>>> print (pp)
(re.compile (' (lorem)', re.IGNORECASE), repl='{!"),
(re.compile (' (ipsum) ', re.IGNORECASE), repl='{!")

It can then be run on any string of text:

>>> pp.run ("LOREM ipSuM")
"LOREM! ipSuM!"

See gtts.tokenizer.pre_processors for more examples.

run (fext)
Run each regex substitution on text.

Parameters text (string) - the input text.
Returns text after all substitutions have been sequentially applied.
Return type string

class gtts.tokenizer.core.PreProcessorSub (sub_pairs, ignore_case=True)
Simple substitution text preprocessor.

Performs string-for-string substitution from list a find/replace pairs. It abstracts gt ts. tokenizer.core.
PreProcessorRegex with a default simple substitution regex.

Parameters

* sub_pairs (1ist) — A list of tuples of the style (<search str>, <replace
str>)

* ignore_case (bool) - Ignore case during search. Defaults to True.

1.3. Pre-processing and tokenizing 13

gTTS Documentation

Example

Replace all occurences of “Mac” to “PC” and “Firefox” to “Chrome”:

>>> sub_pairs = [('Mac', 'PC"), ('Firefox', 'Chrome')]
>>> pp = PreProcessorSub (sub_pairs)

Looking at the pp, we get the following list of search (regex)/replacement pairs:

>>> print (pp)
(re.compile('Mac', re.IGNORECASE), repl='PC'),
(re.compile('Firefox', re.IGNORECASE), repl='Chrome')

It can then be run on any string of text:

>>> pp.run("I use firefox on my mac")
"I use Chrome on my PC"

See gtts.tokenizer.pre processors for more examples.

run (fext)
Run each substitution on text.

Parameters text (string) - the input text.
Returns text after all substitutions have been sequentially applied.

Return type string

class gtts.tokenizer.core.Tokenizer (regex_funcs, flags=<RegexFlag IGNORECASE: 2>)

An extensible but simple generic rule-based tokenizer.

A generic and simple string tokenizer that takes a list of functions (called fokenizer cases) returning regex
objects and joins them by “I” (regex alternation ‘or’) to create a single regex to use with the standard regex.
split () function.

regex_funcs is a list of any function that can return a regex (from re.compile ()) object, such as a
gtts.tokenizer.core.RegexBuilder instance (and its regex attribute).

See the gtts.tokenizer.tokenizer_cases module for examples.
Parameters

* regex_funcs (1ist) — List of compiled regex objects. Each functions’s pattern will
be joined into a single pattern and compiled.

* flags — re flag(s) to compile with the final regex. Defaults to re . IGNORECASE

Note: When the regex objects obtained from regex_ funcs are joined, their individual re flags are ignored
in favour of flags.

Raises TypeError — When an element of regex_funcs is not a function, or a function that
does not return a compiled regex object.

Warning: Joined regex patterns can easily interfere with one another in unexpected ways. It is recom-
manded that each tokenizer case operate on distinct or non-overlapping chracters/sets of characters (For

14

Chapter 1. Installation

gTTS Documentation

IRk

example, a tokenizer case for the period (“.”) should also handle not matching/cutting on decimals, instead
of making that a seperate tokenizer case).

Example

A tokenizer with a two simple case (Note: these are bad cases to tokenize on, this is simply a usage example):

>>> import re, RegexBuilder
>>>

>>> def casel():

C return re.compile("\,")
>>>

>>> def case2():

C return RegexBuilder ('abc', lambda x: "/{}\.".format (x)) .regex
>>>

>>> t = Tokenizer ([casel, case2])

Looking at casel () .pattern, we get:

>>> print (casel () .pattern)

l\,l

Looking at case?2 () .pattern, we get:

>>> print (case2 () .pattern)
"a\. |b\.[c\.'

Finally, looking at t, we get them combined:

>>> print (t)
're.compile('\, |a\.|b\.|c\.', re.IGNORECASE)
from: [<function casel at 0x10bbcdd08>, <function case2 at 0x10b5c5el8>]"

It can then be run on any string of text:

>>> t.run("Hello, my name is Linda a. Call me Lin, b. I'm your friend")
["Hello', ' my name is Linda ', ' Call me Lin', ' ', " I'm your friend"]

run (fext)
Tokenize text.

Parameters text (string)— the input text to tokenize.
Returns A list of strings (token) split according to the tokenizer cases.

Return type list

symbols .ABBREVIATIONS = ['dr', 'Jjr', 'mr', 'mrs', 'ms', 'msgr', 'prof', 'sr',
symbols.SUB_PAIRS = [('Esq.', 'Esquire')]
symbols.ALL PUNC = '?!.,i()[l¢...;:—\n'

symbols.TONE_MARKS = '?!'

1.3. Pre-processing and tokenizing

15

lstl]

gTTS Documentation

1.4 License

The MIT License (MIT)
Copyright © 2014-2020 Pierre Nicolas Durette

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1.5 Contributing

1.5.1 Reporting Issues

On the Github issues page. Thanks!

1.5.2 Submitting Patches

1. Fork. Follow PEP 8!
2. Write/Update tests (see below).

3. Document. Docstrings follow the Google Python Style Guide (docs by Sphinx). You can ‘test’ documentation:

$ pip install . [docs]
$ cd docs && make html # generated in docs/_build/html/

4. Open Pull Request. To the master branch.

5. Changelog. This project uses towncrier for managing the changelog. Please consider creating one
or more ‘news fragment’ in the /news/ directory and adding them to your PR, in the style of
<issue_or_pr_number>.<type> where ‘type’ is one of: ‘feature’, ‘bugfix’, ‘doc’, ‘removal’ or ‘misc’.

See towncrier (New Fragments) for more details. Example:

$ echo 'Fixed a thing!' > gtts/news/1234.bugfix

Note:

Please don’t hesitate to contribute! While good tests, docs and structure are
encouraged, I do welcome great ideas over absolute comformity to the above!
Thanks!

16 Chapter 1. Installation

https://github.com/pndurette/gTTS/issues
https://www.python.org/dev/peps/pep-0008/
http://google.github.io/styleguide/pyguide.html#Comments
http://www.sphinx-doc.org/
https://github.com/hawkowl/towncrier
https://github.com/hawkowl/towncrier

gTTS Documentation

1.5.3 Testing

Testing is done with the unittest framework.
As arule, the file . /tests/test_<module>.py file tests the <module> module.

To run all tests (testing only language ‘en’ and generating an html coverage report in gtts/htmlcov/):

$ pip install . [tests]
$ TEST_LANGS=en pytest -v -s gtts/ —--cov=gtts —--cov-report=html

1.6 Changelog

1.6.1 2.1.0 (2020-01-01)
Features

* The gt ts module

— Added the ability to customize the Google Translate URL hostname. This is useful when google.com
might be blocked within a network but a local or different Google host (e.g. google.cn) is not (#143,
#203):

* New gTTS () parameter t1d to specify the top-level domain to use for the Google hostname, i.e
https://translate.google.<t1ld> (default: com).

% Languages are also now fetched using the same customized hostname.

— Pre-generated TTS API request URLs can now be obtained instead of writing an mp3 file to disk (for
example to be used in an external program):

New get_urls () method returns the list of URLs generated by gTTS, which can be used in lieu
of write_to_fp () or save ().

e The gtts—-cli command-line tool

— New —-t 1d option to match the new gtts customizable hostname (#200, #207)
* Other

— Added Python 3.8 support (#204)

Bugfixes

* Changed default word-for-word pre-processor (('M."', 'Monsieur')) which would substitute any ‘m.” for
‘monsieur’ (e.g. ‘them.” became ‘themonsieur’) (#197)

1.6. Changelog 17

https://github.com/pndurette/gTTS/issues/143
https://github.com/pndurette/gTTS/issues/203
https://github.com/pndurette/gTTS/issues/200
https://github.com/pndurette/gTTS/issues/207
https://github.com/pndurette/gTTS/issues/204
https://github.com/pndurette/gTTS/issues/197

gTTS Documentation

Improved Documentation

* Added examples for newer features (#205, #207)
Misc

o #204, #205, #207
1.6.2 2.0.4 (2019-08-29)

Features

e gTTS is now built as a wheel package (Python 2 & 3) (#181)

Improved Documentation

* Fixed bad example in docs (#163, #166)
Misc

o #164, #171, #173, #185
1.6.3 2.0.3 (2018-12-15)

Features

* Added new tokenizer case for ;" preventing cut in the middle of a time notation (#135)
Misc

o #159
1.6.4 2.0.2 (2018-12-09)

Features

* Added Python 3.7 support, modernization of packaging, testing and CI (#126)

18 Chapter 1. Installation

https://github.com/pndurette/gTTS/issues/205
https://github.com/pndurette/gTTS/issues/207
https://github.com/pndurette/gTTS/issues/204
https://github.com/pndurette/gTTS/issues/205
https://github.com/pndurette/gTTS/issues/207
https://github.com/pndurette/gTTS/issues/181
https://github.com/pndurette/gTTS/issues/163
https://github.com/pndurette/gTTS/issues/166
https://github.com/pndurette/gTTS/issues/164
https://github.com/pndurette/gTTS/issues/171
https://github.com/pndurette/gTTS/issues/173
https://github.com/pndurette/gTTS/issues/185
https://github.com/pndurette/gTTS/issues/135
https://github.com/pndurette/gTTS/issues/159
https://github.com/pndurette/gTTS/issues/126

gTTS Documentation

Bugfixes

* Fixed language retrieval/validation broken from new Google Translate page (#156)

1.6.5 2.0.1 (2018-06-20)

Bugfixes

¢ Fixed an UnicodeDecodeError when installing gTTS if system locale was not utf-8 (#120)

Improved Documentation

* Added Pre-processing and tokenizing > Minimizing section about the API’s 100 characters limit and how larger
tokens are handled (#121)

Misc

o #122

1.6.6 2.0.0 (2018-04-30)

(#108)

Features

e The gtts module
— New logger (“gtts”) replaces all occurrences of print ()
— Languages list is now obtained automatically (gtts. lang) (#91, #94, #106)

— Added a curated list of language sub-tags that have been observed to provide different dialects or accents
(e.g. “en-gb”, “fr-ca”)

— New gTTS () parameter lang_check to disable language checking.

— gTTS () now delegates the text tokenizing to the API request methods (i.e. write_to_fp(),
save ()), allowing gTTS instances to be modified/reused

— Rewrote tokenizing and added pre-processing (see below)

— New gTTS () parameters pre_processor_funcs and tokenizer_ func to conﬁgure pre-
processing and tokenizing (or use a 3rd party tokenizer)

— Error handling:

* Added new exception gTTSError raised on API request errors. It attempts to guess what went
wrong based on known information and observed behaviour (#60, #106)

#* gTTS.write_to_fp () and gTTS.save () alsoraise gTTSError on gits_token error

* gTTS.write_to_fp () raises TypeError when fp is not a file-like object or one that doesn’t
take bytes

#* gTTS () raises ValueError on unsupported languages (and 1ang_check is True)

1.6. Changelog 19

https://github.com/pndurette/gTTS/issues/156
https://github.com/pndurette/gTTS/issues/120
https://github.com/pndurette/gTTS/issues/121
https://github.com/pndurette/gTTS/issues/122
https://github.com/pndurette/gTTS/issues/108
https://github.com/pndurette/gTTS/issues/91
https://github.com/pndurette/gTTS/issues/94
https://github.com/pndurette/gTTS/issues/106
https://github.com/pndurette/gTTS/issues/60
https://github.com/pndurette/gTTS/issues/106

gTTS Documentation

* More fine-grained error handling throughout (e.g. request failed vs. request successful with a bad
response)

» Tokenizer (and new pre-processors):

Rewrote and greatly expanded tokenizer (gtts.tokenizer)

Smarter token ‘cleaning’ that will remove tokens that only contain characters that can’t be spoken (i.e.
punctuation and whitespace)

Decoupled token minimizing from tokenizing, making the latter usable in other contexts
New flexible speech-centric text pre-processing
New flexible full-featured regex-based tokenizer (gtts.tokenizer.core.Tokenizer)

New RegexBuilder, PreProcessorRegex and PreProcessorSub classes to make writing
regex-powered text pre-processors and tokenizer cases easier

Pre-processors:
% Re-form words cut by end-of-line hyphens

* Remove periods after a (customizable) list of known abbreviations (e.g. “jr”, “sr”, “dr”) that can be
spoken the same without a period

Perform speech corrections by doing word-for-word replacements from a (customizable) list of tuples
Tokenizing:

+ Keep punctuation that modify the inflection of speech (e.g. “?”, “!”)

Don’t split in the middle of numbers (e.g. “10.5”, “20,000,000”) (#101)

Don’t split on “dotted” abbreviations and accronyms (e.g. “U.S.A”)

(132

* Added Chinese comma (*’), ellipsis (“...”") to punctuation list to tokenize on (#86)

e The gtts—cli command-line tool

Rewrote cli as first-class citizen module (gtts.cl1i), powered by Click
Windows support using setuptool’s entry_points

Better support for Unicode I/O in Python 2

All arguments are now pre-validated

New —-nocheck flag to skip language pre-checking

New ——all flag to list all available languages

@ 9

Either the ——file option or the <text > argument can be set to “-” to read from stdin

The ——debug flag uses logging and doesn’t pollute st dout anymore

20

Chapter 1. Installation

https://github.com/pndurette/gTTS/issues/101
https://github.com/pndurette/gTTS/issues/86
http://click.pocoo.org

gTTS Documentation

Bugfixes
e _minimize (): Fixed an infinite recursion loop that would occur when a token started with the miminizing
delimiter (i.e. a space) (#86)

e _minimize (): Handle the case where a token of more than 100 characters did not contain a space (e.g. in
Chinese).

* Fixed an issue that fused multiline text together if the total number of characters was less than 100

 Fixed gtts—cli Unicode errors in Python 2.7 (famous last words) (#78, #93, #96)

Deprecations and Removals

* Dropped Python 3.3 support
* Removed debug parameter of gTTS (in favour of logger)
* gtts—cli: Changed long option name of —o to ——output instead of -——destination

e gTTS () will raise a ValueError rather than an AssertionError on unsupported language

Improved Documentation

* Rewrote all documentation files as reStructuredText
* Comprehensive documentation writen for Sphinx, published to http://gtts.readthedocs.io

» Changelog built with towncrier

Misc

* Major test re-work

» Language tests can read a TEST__LANGS enviromment variable so not all language tests are run every time.
e Added AppVeyor CI for Windows

* PEP 8 compliance

1.6.7 1.2.2 (2017-08-15)
Misc

e Update LICENCE, add to manifest (#77)

1.6. Changelog 21

https://github.com/pndurette/gTTS/issues/86
https://github.com/pndurette/gTTS/issues/78
https://github.com/pndurette/gTTS/issues/93
https://github.com/pndurette/gTTS/issues/96
http://www.sphinx-doc.org
http://gtts.readthedocs.io
https://github.com/hawkowl/towncrier
https://www.appveyor.com
https://www.python.org/dev/peps/pep-0008/
https://github.com/pndurette/gTTS/issues/77

gTTS Documentation

1.6.8 1.2.1 (2017-08-02)
Features

* Add Unicode punctuation to the tokenizer (such as for Chinese and Japanese) (#75)

Bugfixes

¢ Fix > 100 characters non-ASCII split, unicode () for Python 2 (#71, #73, #75)

1.6.9 1.2.0 (2017-04-15)

Features

 Option for slower read speed (s1low=True for gTTS (), ——slow for gtts—cli) (#40, #41, #64, #67)
» System proxy settings are passed transparently to all http requests (#45, #68)
* Silence SSL warnings from urllib3 (#69)

Bugfixes

* The text to read is now cut in proper chunks in Python 2 unicode. This broke reading for many languages such
as Russian.

* Disabled SSL verify on http requests to accommodate certain firewalls and proxies.

» Better Python 2/3 support in general (#9, #48, #68)

Deprecations and Removals

e ‘pt-br’ : ‘Portuguese (Brazil)’ (it was the same as ‘pt’ and not Brazilian) (#69)

1.6.10 1.1.8 (2017-01-15)

Features

e Added stdin support via the ‘- text argument to gtts—-cli (#56)

1.6.11 1.1.7 (2016-12-14)

Features

* Added utf-8 support to gtts—-cli (#52)

22 Chapter 1. Installation

https://github.com/pndurette/gTTS/issues/75
https://github.com/pndurette/gTTS/issues/71
https://github.com/pndurette/gTTS/issues/73
https://github.com/pndurette/gTTS/issues/75
https://github.com/pndurette/gTTS/issues/40
https://github.com/pndurette/gTTS/issues/41
https://github.com/pndurette/gTTS/issues/64
https://github.com/pndurette/gTTS/issues/67
https://github.com/pndurette/gTTS/issues/45
https://github.com/pndurette/gTTS/issues/68
https://github.com/pndurette/gTTS/issues/69
https://github.com/pndurette/gTTS/issues/9
https://github.com/pndurette/gTTS/issues/48
https://github.com/pndurette/gTTS/issues/68
https://github.com/pndurette/gTTS/issues/69
https://github.com/pndurette/gTTS/issues/56
https://github.com/pndurette/gTTS/issues/52

gTTS Documentation

1.6.12 1.1.6 (2016-07-20)
Features

* Added ‘bn’ : ‘Bengali’ (#39, #44)

Deprecations and Removals

e ‘ht’ : ‘Haitian Creole’ (removed by Google) (#43)

1.6.13 1.1.5 (2016-05-13)
Bugfixes

» Fixed HTTP 403s by updating the client argument to reflect new API usage (#32, #33)

1.6.14 1.1.4 (2016-02-22)

Features

* Spun-off token calculation to gTTS-Token (#23, #29)

1.6.15 1.1.3 (2016-01-24)
Bugfixes

* gtts—cli works with Python 3 (#20)
* Better support for non-ASCII characters (#21, #22)

Misc
* Moved out gTTS token to its own module (#19)

1.6.16 1.1.2 (2016-01-13)

Features

e Added gTTS token (tk url parameter) calculation (#14, #15, #17)

1.6. Changelog 23

https://github.com/pndurette/gTTS/issues/39
https://github.com/pndurette/gTTS/issues/44
https://github.com/pndurette/gTTS/issues/43
https://github.com/pndurette/gTTS/issues/32
https://github.com/pndurette/gTTS/issues/33
https://github.com/Boudewijn26/gTTS-token
https://github.com/pndurette/gTTS/issues/23
https://github.com/pndurette/gTTS/issues/29
https://github.com/pndurette/gTTS/issues/20
https://github.com/pndurette/gTTS/issues/21
https://github.com/pndurette/gTTS/issues/22
https://github.com/pndurette/gTTS/issues/19
https://github.com/pndurette/gTTS/issues/14
https://github.com/pndurette/gTTS/issues/15
https://github.com/pndurette/gTTS/issues/17

gTTS Documentation

1.6.17 1.0.7 (2015-10-07)

Features

e Added stdout support to gtts—cli, text now an argument rather than an option (#10)

1.6.18 1.0.6 (2015-07-30)

Features

* Raise an exception on bad HTTP response (4xx or 5xx) (#8)

Bugfixes

* Added client=t parameter for the api HTTP request (#8)

1.6.19 1.0.5 (2015-07-15)

Features

e write_to_fp () to write to a file-like object (#6)

1.6.20 1.0.4 (2015-05-11)

Features
¢ Added Languages: zh-yue : ‘Chinese (Cantonese)’, en-uk : ‘English (United Kingdom)’, pz-br : ‘Portuguese

(Brazil)’, es-es : ‘Spanish (Spain)’, es-us : ‘Spanish (United StateS)’, zh-cn : ‘Chinese (Mandarin/China)’, zh-tw
: ‘Chinese (Mandarin/Taiwan)’ (#4)

Bugfixes

e gtts—cli print version and pretty printed available languages, language codes are now case insensitive (#4)

1.6.21 1.0.3 (2014-11-21)

Features

¢ Added Languages: ‘en-us’ : ‘English (United States)’, ‘en-au’ : ‘English (Australia)’ (#3)

24 Chapter 1. Installation

https://github.com/pndurette/gTTS/issues/10
https://github.com/pndurette/gTTS/issues/8
https://github.com/pndurette/gTTS/issues/8
https://github.com/pndurette/gTTS/issues/6
https://github.com/pndurette/gTTS/issues/4
https://github.com/pndurette/gTTS/issues/4
https://github.com/pndurette/gTTS/issues/3

gTTS Documentation

1.6.22 1.0.2 (2014-05-15)

Features

* Python 3 support

1.6.23 1.0.1 (2014-05-15)
Misc

» SemVer versioning, CI changes

1.6.24 1.0 (2014-05-08)

Features

e Initial release

1.6. Changelog

25

gTTS Documentation

26 Chapter 1. Installation

CHAPTER
TWO

MISC

* genindex

¢ modindex

27

gTTS Documentation

28 Chapter 2. Misc

gtts
gtts
gtts
gtts
gtts

.lang,7

.tokenizer, 8
.tokenizer.pre_processors,9
.tokenizer.tokenizer_cases, 10
.tts, 5

PYTHON MODULE INDEX

29

gTTS Documentation

30 Python Module Index

Symbols

-—all

gtts—-cli command
—-—debug

gtts—-cli command
——file <file>

gtts—-cli command
--lang <lang>

gtts—-cli command
——-nocheck

gtts—-cli command
——output <output>

gtts—-cli command
--slow

gtts—-cli command
--tld <tld>

gtts—-cli command
—-—-version

gtts—-cli command

gtts—-cli command
gtts—-cli command
gtts—-cli command
gtts—-cli command
gtts—-cli command

<text>
gtts—-cli command

A

ABBREVIATIONS (gtts.tokenizer.symbols attribute), 15
(in

abbreviations ()

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

option,3
option,3
option,3
option,3

option,3

W

option, 3
option,3
option,3
option,3
option,3

option,3

W

option, 3
option,3
option,3

option,4

gtts.tokenizer.pre_processors), 9
ALL_PUNC (gtts.tokenizer.symbols attribute), 15

C

colon () (in module gtts.tokenizer.tokenizer_cases), 10

E

end_of_line ()

gtts.tokenizer.pre_processors), 9

G

get_urls () (gtts.tts.gTTS method), 6

gTTSs (class in gtts.tts), 5
gtts.lang (module), 7

gtts.tokenizer (module), 8

INDEX

module

gtts.tokenizer.pre_processors (module), 9

gtts.tokenizer.tokenizer_cases

10
gtts.tts (module), 5

gtts—-cli command line option

--all,3
--debug, 3
——file <file>,3
--lang <lang>,3
——-nocheck, 3

——output <output>,3

—--slow, 3

——tld <tld>,3

—-—version, 3

-£,3

-1,3

-0,3

-s,3

-t,3

<text>,4
gTTSError, 6

(module),

infer_msg () (gtts.tts.gTTSError method), 6

L

legacy_all_punctuation ()
gtts.tokenizer.tokenizer_cases), 10

O

other_punctuation ()

gtts.tokenizer.tokenizer_cases), 11

module

module

31

gTTS Documentation

P

period_comma () (in module
gtts.tokenizer.tokenizer_cases), 11

PreProcessorRegex (class in gtts.tokenizer.core), 12

PreProcessorSub (class in gtts.tokenizer.core), 13

R

RegexBuilder (class in gtts.tokenizer.core), 12

run () (gtts.tokenizer.core.PreProcessorRegex method),
13

run () (gtts.tokenizer.core.PreProcessorSub method), 14

run () (gtts.tokenizer.core.Tokenizer method), 15

S

save () (gtts.tts.gTTS method), 6
SUB_PATIRS (gtts.tokenizer.symbols attribute), 15

T

Tokenizer (class in gtts.tokenizer.core), 14
TONE_MARKS (gtts.tokenizer.symbols attribute), 15

tone_marks () (in module
gtts.tokenizer.pre_processors), 9
tone_marks () (in module

gtts.tokenizer.tokenizer_cases), 11
tts_langs () (in module gtts.lang), 7

W

word_sub () (in module gtts.tokenizer.pre_processors),
9
write_to_fp () (gtts.tts.gTTS method), 6

32

Index

	Installation
	Command-line (gtts-cli)
	gtts-cli
	Examples
	Playing sound directly

	Module (gtts)
	gTTS (gtts.gTTS)
	Languages (gtts.lang)
	Examples
	Playing sound directly
	Logging

	Pre-processing and tokenizing
	Definitions
	Pre-processing
	Tokenizing
	Minimizing
	gtts.tokenizer module reference (gtts.tokenizer)

	License
	Contributing
	Reporting Issues
	Submitting Patches
	Testing

	Changelog
	2.1.0 (2020-01-01)
	2.0.4 (2019-08-29)
	2.0.3 (2018-12-15)
	2.0.2 (2018-12-09)
	2.0.1 (2018-06-20)
	2.0.0 (2018-04-30)
	1.2.2 (2017-08-15)
	1.2.1 (2017-08-02)
	1.2.0 (2017-04-15)
	1.1.8 (2017-01-15)
	1.1.7 (2016-12-14)
	1.1.6 (2016-07-20)
	1.1.5 (2016-05-13)
	1.1.4 (2016-02-22)
	1.1.3 (2016-01-24)
	1.1.2 (2016-01-13)
	1.0.7 (2015-10-07)
	1.0.6 (2015-07-30)
	1.0.5 (2015-07-15)
	1.0.4 (2015-05-11)
	1.0.3 (2014-11-21)
	1.0.2 (2014-05-15)
	1.0.1 (2014-05-15)
	1.0 (2014-05-08)

	Misc
	Python Module Index
	Index

